Сколько кадров воспринимает глаз человека. Сколько видит ФПС человеческий глаз

Если увеличить частоту кадров, что будет?

Такой термин, как частота кадров (fps), впервые применил фотограф Эдвард Майбридж. И с тех пор кинематографисты без устали экспериментируют с этим показателем. С точки зрения целесообразности может показаться, что изменять количество кадров в секунду неразумно, ведь другое количество не увидит человеческий глаз.

Сколько fps воспринимает глаз? Мы знаем, что 24. Есть ли смысл что-то менять? Оказывается, что все эти усилия оправдываются. Современные геймеры, да и просто люди, являющиеся пользователями компьютеров, могут с уверенностью сказать об этом.

Научное обоснование

Ученые доказали, что при 24-кратной частоте кадров человек воспринимает не только общую картинку на мониторе, но на подсознательном уровне отдельные кадры. Для разработчиков игр эта информация стала стимулом к проведению дальнейших исследований возможностей органов зрения человека.

Поразительно, но глаз человека может воспринимать видеоряд со скоростью 60 кадров в секунду и более. Способность к восприятию большего количества изображений увеличивается, когда вы концентрируетесь на чем-либо.

В этом случае человек способен воспринимать до ста кадров в секунду, не теряя семантической нити видеоизображения. А в случае, когда внимание рассеивается, скорость восприятия может упасть до 10 кадров в секунду.

Отвечая на вопрос о том, сколько fps видит человеческий глаз, можно смело назвать цифру 100.

Глаза и мозг работают в тандеме

Споры о том, сколько человеческий глаз может воспринимать кадров в секунду, ведутся давно во многом потому, что на этот вопрос нет однозначного ответа.

Как отмечает Уилтшир, человек не считывает реальность как компьютер, а визуальное восприятие целиком строится на совместной работе глаз и мозга. Поэтому, например, люди по-разному видят движение и свет, а периферийное зрение лучше справляется с некоторыми аспектами картинки, чем основное – и наоборот.

Время, за которое человек воспринимает визуальную информацию, суммируется из времени, за которое свет попадает в глаза, времени передачи полученной информации в мозг и времени её обработки.

По словам профессора психологии Джордана Делонга (Jordan DeLong), обрабатывая визуальные сигналы, мозг постоянно занимается калибровкой, высчитывая средние показатели с тысяч и тысяч нейронов, поэтому вся система более точна, чем её отдельные составляющие.

Как отмечает исследователь Эдриен Чопин (Adrien Chopin), скорость света едва ли можно изменить, а вот часть визуального восприятия, проходящую в мозгу ускорить вполне реально.

Как отмечает Уилтшир, именно геймеры, которые чаще всего пекутся о высокой частоте кадров, способны воспринимать визуальную информацию быстрее любых других людей.

Как проводят исследования?

Эксперименты в области выявления возможностей органов зрения человека проводятся постоянно, и ученые не собираются останавливаться на достигнутом. Например, проводят такое тестирование: контрольная группа людей просматривает предложенные видеозаписи с различной частотой кадров.

В определенные фрагменты в разных промежутках времени вставлены кадры с каким-либо дефектом. Они изображают какой-то лишний, не вписывающийся в общую канву предмет. Это может быть быстро движущийся летящий объект.

Во всех группах более 50% испытуемых замечают летящий объект. Это обстоятельство не вызывало бы такого удивления, если бы не знать, что это видео демонстрировали с частотой 220 кадров в секунду. Конечно, рассмотреть подробно изображение никто не смог, но даже тот факт, что люди просто смогли заметить мелькание на экране при такой кадровой частоте, говорит сам за себя.

Сколько кадров в секунду видит человек, интересно многим. Более любопытные подробности рассмотрим далее.

Когда группа испытуемых просматривала высокочастотное видео, то заметила лишний предмет на экране.

  • Ученые создавали группы людей.
  • Предоставляли им видеоматериал, в котором присутствовали еле видимые дефектные кадры с изображением чего-то лишнего. Обычно это был летящий объект.
  • После просмотра значительная часть говорила о том, что заметила мелькание в видео.
  • Это поразило всех, так как фпс было на уровне 220.

Какие способности имеет зрение?

Как было сказано выше, глаз человека видит изображение, как и все остальное не по кадрово, а это значит, что чем больше кадров будет показано за одну секунду, тем более плавным и четким получится изображение.

Использование большего количества является делом времени, когда-то использовали 16, а сейчас 24, 60. С каждым последующим увеличением видеочастоты, глаз человека все больше привыкает.

Стоит рассмотреть строение человеческого глаза. Колбочки и палочки – составляющие фоторецепторов, так называемой системы восприятия. Благодаря им можно различать цвета и оттенки, воспринимать изображения.

Сложность нахождения максимального fps (framers per second) заключается в расположении этих рецепторов. У людей количество фпс на периферии зрительной системы увеличено. Это своеобразная адаптация организма к способу существования, которая определяет, что видит человеческий глаз.

Зрительная система настроена таким образом, чтобы видеть цельную картину. Вот почему если показывать по 1 кадру в секунду некоторое время, то человек увидит полное изображение. Однако доказано, что резкие перепады fps дискомфортные и их с трудом воспринимает человеческий глаз.

Во времена немого кино количество кадров равнялось 16, но жадные владельцы кинотеатра намеренно увеличивали до 30, что негативно влияло на впечатления от просмотра. Стандартом, комфортным для зрения, является 24 фпс.

Предел ли это?

В компьютерных играх этот показатель стал значительно больше, что позволило сделать их изображение более правдоподобным.

Ученых интересуют ответы на вопросы, какая частота кадров максимальна и что произойдет, если увеличить fps, каков в этом смысл. И правда, логичнее было бы ничего не менять, однако производителей компьютерных игр такое решение не устроило.

И в этом может убедиться каждый геймер. Создатели начали проводить эксперименты. Целью этого было узнать, какое количество кадров необходимо, чтобы видимая картинка на мониторе казалась реалистичной.

Хотя в стандартных мультфильмах, кино и видео норма этого показателя равна 24, но результаты опытов помогли киноиндустрии и игровым компаниям продвинуться вперед. Это привело к появлению нового формата – IMAX и 3D, которые используются в кинотеатрах.

Какое количество кадров выбрать

Большинство фильмов, часть видеоматериалов сняты с частотой 24 к.с.
Значение является классическим стандартом в кинематографии
, но из этого не следует, что оно используется повсеместно.

Для создания движения будет вполне достаточно 12 кадров
, но это значение не использовалось, так оно было минимальным для достижения эффекта. При использовании меньшего числа к.c., изображение переставало восприниматься плавным, что вело к исчезновению эффекта.

Необходимость в использовании большего кадров, возникла с приходом озвучки. При записи в прежнем формате были несоответствия между аудио и видео дорожками. Из-за недостаточного количества кадров, озвучка становились искаженной и несинхронной, что приводило к исчезновению целостного восприятия.

Дополнительные 8 к.с придали больше плавности и помогли решить проблему. Использование большего количества кадров, требовало большего расходов пленки, которая в то время стоило не дешево. 24 кадра являются минимальным значением для плавности и используются по сегодняшний день, являясь общепринятым стандартом киносъемки и проекции.

Частота 60 кадров используется ТВЧ – Телевидение Высокой Четкости и системой широкоформатного кино IMAX.

Сколько кадров в секунду видит человек, теперь вам известно.

Выбор количества кадров
зависит от творческого видения и эффекта, который Вы хотите получить. Меньшая скорость делает так, что мозг подсознательно признает, что наблюдаемое изображение является «фальшивкой», поэтому выбор 24 кадров в секунду может отлично подчеркнуть концепцию на основе воображения, например, в сказках и других нереальных фильмах.

Чем выше количество кадров, тем более реалистично выглядят сцены, поэтому такая скорость идеально подходит для современных художественных, документальных или фильмов в стиле экшен. Хотя 60 кадров в секунду является лучшим технически решением для достижения плавности, но покадровые анимационные ролики отлично выглядят и при 12 кадрах в секунду, а увидеть мяч во время матча, записанного с частотой 24 кадра в секунду – это уже практически невозможно.

Часто разработчики пытаются придерживаться частоты кадров традиционно используемой в их регионе, т.е. 29,97 кадра в секунду в США и Японии и 25 кадров в секунду в Европе и большинстве стран Азии. Постарайтесь, чтобы ваш выбор был продуман.

Помните, что человеческий глаз является сложным устройством и не распознает отдельных кадров, поэтому эти рекомендации не следует рассматривать в качестве доказанных научно фактов, а, скорее, как результат многолетних наблюдений разных людей.

Ниже вы найдете информацию об общих цифрах кадров, используемых в фильмах и клипах:

  • 12 кадров в секунду
    : абсолютный минимум, необходимый для появления движения. Меньшие скорости будут восприниматься как набор отдельных изображений.
  • 24 кадра в секунду
    : минимальное значение, при котором движение выглядит достаточно плавно. Это неплохой вариант, который подойдет для создания атмосферы старого фильма.
  • 25 кадров в секунду
    : ТВ-стандарт в ЕС и большинстве стран Азии.
  • 30 кадров в секунду (точнее 29,97)
    : стандарт, применяемый в США и Японии.
  • 48 кадров в секунду
    : значение в два раза выше, чем в традиционных фильмах.
  • 60 кадров в секунду
    : в настоящее время наиболее передовая скорость записи. Большинство людей не видит особой разницы в плавности движений при съемке выше 60 кадров в секунду. Это количество кадров, отлично подходит для отображения динамичного экшена.
Предлагаем ознакомиться:  Какие есть противопоказания при глаукоме

Немного о строении глаза

Сетчатка глаза состоит из своеобразных палочек и колбочек, которые по-разному воспринимают информацию, однако совмещают её в единое целое.

Палочки почти не чувствуют цветовых различий, однако способны быстро улавливать смену изображения. С этой точки зрения fps палочек довольно высок.

Колбочки, напротив, отлично различают цвета, однако делают это с меньшим fps, чем палочки.

Совместно палочки и колбочки составляют фоторецепторы глаза, которые отвечают за целостность просматриваемого изображения.

Задача вычисления максимального fps, воспринимаемого человеческим глазом, усложняется неравномерным распределением фоторецепторов на сетчатке глаза. В центре количество различных рецепторов примерно одинаково, а вот ближе к краям сетчатки преобладают палочки.

Такое строение имеет логичное обоснования с точки зрения природы. Ещё в те времена, когда нужно было постоянно охотиться, чтобы добыть пищу, человеку необходимо было хорошо улавливать движение боковым зрением. Для этого fps глаза по краям сетчатки увеличено природой естественным образом.

Если же брать во внимание прямой взгляд, то значение будет иметь только общее fps фоторецепторов, расположенных по центру сетчатки глаза.

Десятки учёных на протяжении множества лет изучали этот вопрос. В итоге были выведены минимальные, максимальные, а также средние значения fps, которые нормально воспринимаются человеческим глазом.

Строение человеческого глаза таково, что он «запрограммирован»
видеть не отдельные кадры, а картинку в целом. То есть даже если показывать человеку по 1 кадру в секунду в течение длительного промежутка времени, то он станет воспринимать не отдельные изображения, а общую картину движения.

Однако такое fps довольно низкое и создаёт стойкое ощущение дискомфорта. К этому выводу пришли кинематографисты ещё во времена немого кино. Именно тогда частота кадров в секунду была равна 16. Если сравнить немое кино с современными картинами, то будет видна явная разница – возникнет ощущение замедленной съёмки.

В современных картинах признан общемировой стандарт 24 кадра в секунду. Это fps, в котором человеческий глаз видит общую картину во вполне комфортных условиях. Но является ли это пределом?

Казалось бы, если 24 кадра в секунду достаточно для глаза, то есть ли практический смысл добиваться большего? Оказывается, есть. Сегодня в этом может убедиться каждый обладатель компьютера, который хоть раз играл в какую-либо динамическую игру.

При fps равном 24, человеческий глаз видит не только общую картину на экране монитора, но и отдельные кадры.

Вот тут-то и пришлось разработчикам игр поусердствовать, чтобы выяснить, какие же значения оптимальны в этом контексте.

Более современные исследования показали, что человеческий глаз видит и воспринимает изображения со скоростью до 60 кадров в секунду!

В этом случае все движения на экране монитора получаются наиболее плавными и реалистичными.

Как известно, большинство учёных – это люди, которые не останавливаются на достигнутых результатах и проводят всё новые и новые тесты и эксперименты. Учёные-исследователи возможностей человеческого глаза не являются исключением.

Тесты проводятся следующим образом: группе людей предлагается просмотреть несколько видеозаписей с различной кадровой частотой. В некоторые из них в различные промежутки времени добавляются кадры с дефектом – на них изображено что-то лишнее, не вписывающееся в общую картину. Так, например, группе испытуемых показывали видео, дополненное летящим объектом.

Более половины участников эксперимента сумели заметить этот объект. Такой результат не вызывал бы удивления, если бы не одно «но»
– fps видео составляло 220 кадров в секунду! И, хотя никто не смог рассмотреть, что же именно было изображено, сам факт отрицать невозможно – человеческий глаз может заметить отдельное изображение на скорости 220 кадров в секунду.

Оказывается, во времена первых фильмов, кинопроекторы оснащались ручным стабилизатором скорости. Специально обученный человек крутил ручку такого кинопроектора, и именно от него зависела скорость смены кадров в фильме.

Если изначально скорость составляла 16 кадров, то потом люди начали произвольно изменять её в зависимости от поведения публики. При показе комедийного изображения и высокой активности зрителей fps увеличивали до 20-30.

Но это повлекло за собой и негативные последствия. Во время окончания Первой мировой войны владельцы кинотеатров нуждались в повышении прибыли и прокручивали фильмы на высоких скоростях, сокращая итоговую длительность одного сеанса и увеличивая количество сеансов.

Это приводило к тому, что некоторые картины попросту не воспринимались человеческим глазом. В итоге правительства некоторых стран издали законы, в которых ограничивалась максимальная частота прокрутки кадров.

Актуальность

На практике увеличение значения fps помогает «сгладить»
изображение – создать эффект непрекращающегося движения.

Актуальность подбора значений обуславливается целью применения эффекта сглаживания.

Применение больших частот на данном этапе развития техники просто не имеет смысла, хотя время от времени и практикуется специалистами в различных областях.

«Кино – это правда 24 кадра в секунду.»
Жан-Люк Годар

Здрасте, здрасте! Тема сегодня у нас любопытная, но априори «холиварная». Что лучше 24, 48, 60 или вообще 100500 кадров в секунду? Ответа пока нет, да и нужен ли он? Может, стоит использовать и 24, и 48 fps? Но об этом позже.

Для начала немного истории. Если знаете эти факты, то милости прошу, уважаемые профессионалы, перескочить через два абзаца собственно к самой теме.

Почему большая часть фильмов идет с частотой 24 кадра в секунду? Этот стандарт был введен, как минимальный для соответствия видео и аудио дорожек на заре возникновения звукового кино. Немое кино часто снимали 16-18 fps ,и в этих условиях не было возможности синхронно прикрепить звуковую дорожку.

Но на самом деле, зритель видит 48 кадров. Как это получается? Все просто! В кинопроекторе есть такая штука – обтюратор. Он выглядит, как половина диска. Обтюратор вертится и, если он не закрывает свет, то на экран проецируется кадр, и, если свет перекрыт, то на экране черная пустота. И так каждый второй кадр! Вдумайтесь! Половину фильма зритель не получает никакой информации!

На телевидение изначально была кадровая частота, равная 50 или 60 к/с. Это обусловлено системой переменно электрического тока 50гц в Европе и 60гц в Америке. Но на экране телевизора показываются не полноценные кадры, а полукадрики.

Но дальше появляются цифровые видео- и кинокамеры способные снимать полноценные 50, 60 и более кадров в секунду. И, конечно, их сразу начинают использовать в производстве сериалов, тем самым создав для HFR
(высокой кадровой частоте) репутацию слишком бытового изображения, которое не может создать особую атмосферу кино.

В кино заговорили о HFR
, когда стало известно о съемках «Хоббита» с частотой 48 к/с, и «Аватара 2» с 60 к/с. Фильм Питера Джексона уже вышел, и многим было непривычно видеть новую частоту кадров, у кого-то даже закружилась голова.

Один фотограф на своем мастер-классе сказал, что в фотографии самое важное:

  1. Выделить главное
  2. Убрать лишнее
  3. Показать динамику и объем.

Так же и в киноизображении. Многие начинающие фильммейкеры задаются вопросом: «Как получить киношную картинку?». В кино как раз занимаются этими 3 пунктами. Выделяют главное с помощью ГРИП
(глубины резкости изображаемого пространства), цветовых и световых акцентов, движения персонажа или камеры и прочими приемами.

Убирают лишнее с помощью, представьте себе, тех же приемов: отсекают ненужные объекты оставив их в расфокусе, фон менее освещают, чем всю сцену, кадрируют изображение по законам восприятия человека. Динамику и объем показывают движением камеры, персонажей, выдержкой пленки.

Основная суть атмосферы кино в небольшом подергивании – стробе и легкой нечеткости кадра. Размытость возникает потому, что в кино не используют маленьких выдержек, иначе строб будет сильно заметен. А так фильм течет как река, затягивает за собой, позволяет комфортно себя чувствовать.

Неужели злодеи Джексон и Кэмерон хотят отнять у нас такие хорошие условия для просмотра? Но постойте! При использовании HFR
плавность «реки» будет достигнута большим количеством кадров – никаких скачков! А вода станет чище, и можно будет различить камушки на дне.

Предлагаем ознакомиться:  Гормональные капли в глаза

Стюарт Мэшвитц в своем говорит о том, что киношность есть урезание информации. Но давайте вспомним историю. Каждый раз, когда кто-то решал увеличить возможность информативности кино, сообщество кинематографистов было против.

Говорили, что новое веяние погубит кинематограф. Впрочем, зрителям нравилось нововведение. Такая ситуация была со звуковым, цветовым, широкоформатным и 3D кино. Видимо, новый шаг – это фильмы, снятые с высокой частотой кадров.

Но ведь нередко кинодеятели возвращаются к старым формам. Черно-белые киноленты, или ч/б вставки в цветные фильмы – вообще, очень частое явление. И немое кино иногда снимают, и даже «Оскары» за это получают.

Поэтому, зачем хоронить 24 кадра? Такие фильмы, определенно, будут существовать еще много лет. Стоит принять частоту кадров как инструмент для достижения необходимого результата. Научиться пользоваться им как диафрагмой и выдержкой, цветным и ч/б изображением, широкоугольной и длиннофокусной оптикой.

Годар сказал: «Кино – это правда 24 кадра в секунду.». Сколько правды захотите сказать вы, зависит только от вас, господа начинающие и уже продвинутые фильммейкеры!

Картинка на кинескопе телевизора не показывается на мгновение, как в кино, а рисуется сверху вниз электронным лучом в течение одного кадра – чуть менее 0.02 сек при “европейской” частоте 50 Гц. Причём рисуется сначала одна половина кадра, а потом, через строку, другая.

Это уменьшает заметность мерцания. 50 Гц – это частота полей, привязанная к частоте электросети, иначе на старых телевизорах появилась бы помеха в виде горизонтальной полосы (иногда нечто подобное видно на телевизорах в старых фильмах) .

В стандарте США – 60 Гц, отсюда и пошла такая частота в мониторах. Но всё равно, действительно, на больших телевизорах, а также на мониторах, которые намного ближе к глазу, мерцание ярких участков заметно, поэтому до перехода на ЖК и плазмы, в больших ЭЛТ-телевизорах искусственно увеличивали частоту до 100 Гц, а в не совсем старых ЭЛТ-мониторах частоту можно было выбирать.

На ЖК особого смысла в увеличении частоты уже нет – там каждая точке сохраняет состояние, пока не придёт сигнал на изменение. Хотя крутые компьютерные игроки могут с этим не согласиться. Вообще, развертка (попросту говоря – это рисование кадра на экране ТВ) бывает не только черезстрочная, но и прогрессивная, то есть кадр рисуется не через строку полями, а весь сразу.

Такая картинка лучше для глаз, но есть проблемы с передачей сигнала, так как раньше это требовало более широкой полосы для сигнала, а сейчас – большей скорости цифрового потока. Поэтому сильно увеличивать частоту нельзя.

Кстати, увеличение частоты до 100 Гц на ТВ иногда вызывало новые проблемы: например, бегущая строка двоилась.Кроме того, есть ещё проблемы с плавностью движения. При частоте меньше 20-25 Гц можно забыть о плавности движений:

это можно иногда наблюдать на камерах видеонаблюдения, которые работают на частоте 15 Гц (часто и меньше)- тут уже ради экономии места на винчестерах. Но и при увеличении частоты, как ни странно, тоже возникают проблемы с движениями объектов, но теперь уже из-за того, что видеосигнал сейчас кодируется в цифровую форму, и тут туго приходиться разработчикам кодеков – программ для кодирования видео в цифровой формат.

25(30) Гц для черезстрочной развертки, и 50(60) для прогрессивной. Правда, применение слова “развёртка” для полностью цифрового тракта (от видеокамеры до экрана телевизора) не совсем корректно, его продолжают применять, потому что избавить цифровые форматы от аналогового наследства пока не удалось – надо обеспечивать совместимость со старыми аппаратами.

Неожиданные факты

Не все знают о таком интересном факте: эксперименты с показом видеоизображения с разной частотой начались более ста лет назад в эпоху немого кино. Для демонстрации первых фильмов кинопроекторы снабжались ручным регулятором скорости.

То есть фильм показывали с той скоростью, с которой крутил ручку механик, а он, в свою очередь, ориентировался на реакцию зала. Изначальная скорость показа немого фильма составляла 16 кадров в секунду.

Но при просмотре комедии, когда публика проявляла высокую активность, до 30 кадров в секунду. Но такая возможность самовольно регулировать скорость показа могла иметь и отрицательные последствия. Когда владелец кинотеатра хотел заработать больше, он, соответственно, сокращал время показа одного сеанса, но увеличивал количество самих сеансов.

Это приводило к тому, что кинопродукция не воспринималась человеческим глазом, а зритель оставался недовольным. В результате во многих странах на законодательном уровне запретили демонстрацию фильмов с ускоренной частотой и определили норму, в соответствии с которой работали киномеханики. Вообще, для чего изучаются fps и человеческий глаз? Поговорим об этом.

Но при просмотре комедии, когда публика проявляла высокую активность, скорость увеличивали до 30 кадров в секунду. Но такая возможность самовольно регулировать скорость показа могла иметь и отрицательные последствия.

Когда владелец кинотеатра хотел заработать больше, он, соответственно, сокращал время показа одного сеанса, но увеличивал количество самих сеансов. Это приводило к тому, что кинопродукция не воспринималась человеческим глазом, а зритель оставался недовольным.

В результате во многих странах на законодательном уровне запретили демонстрацию фильмов с ускоренной частотой и определили норму, в соответствии с которой работали киномеханики. Вообще, для чего изучаются fps и человеческий глаз? Поговорим об этом.

Сколько вешать в кадрах

Мнения о том, сколько человеку нужно кадров в секунду, у учёных разошлись. Профессор Бьюзи считает, что для комфорта стоит проходить как минимум отметку в 60 Гц, однако он не знает, будет ли разница для некоторых людей между 120 и 180 кадрами в секунду.

Как частота кадров влияет на восприятие, насколько быстро мы способны улавливать самые незначительные изменения и сколько кадров оптимальны для человеческого глаза?

Кадровая частота, так же известная, как FPS (Frames per Second), Frame rate и Frame frequency
.

Является общепринятой единицей измерения, показывающей число кадров, сменяющихся за секунду.

Точное значение, которое способен уловить человеческий глаз сложно назвать, так как он не способен видеть происходящие по кадрово. Восприятие напрямую зависит от индивидуальных способностей человека. Примерные границы начинаются от 20 и заканчиваются далеко за 200 к. с.

Каждый кадр представляет собой независимое статичное «неподвижное» изображение, которое сменяется с определенной скоростью и последовательностью, создавая эффект движения.

20 сентября 2017

Итак, сколько кадров в секунду видит человеческий глаз?

Сколько кадров в секунду видит глаз человека?

На эту тему сломано множество копий на просторах интернета. Главным образом по тому, что людям хочется знать предел FPS, который имеет смысл устанавливать в играх, т.к. это дает возможность оценивать практическую целесообразность покупки более мощных видеокарт.

Попытаемся разобраться.

Аналогом FPS является инертность
палочек и колбочек — фоторецепторы светочувствительных клеток сетчатки глаза.

Инертность – это время необходимое рецептору для того, что бы воспринять новую информацию.

И тут начинаются первые проблемы.

  • во-первых палочки и колбочки по-разному воспринимают движение и цвет. Палочки в 100 раз менее чувствительны к цветам, но имеют значительно меньшую инертность. Т.е. их FPS больше. Но они практически не способны различать цвета;
  • во-вторых эти фоторецепторы размещаются на сетчатки НЕ
    равномерно. Колбочки (которые имеют низкий FPS но хорошо распознают цвета) расположены в центре в перемешку с колбочками. По бокам сетчатки находятся только палочки.

Идея матушки природы проста — по бокам расположено то, что максимально чувствительно к движению. Задача этих рецептором просто сигнализировать о том, что «что-то движется вон в тех кустах сбоку». Затем человек может повернуть голову и рассмотреть это «что-то» уже более чувствительными рецепторами — ба-а! да это же большая полосатая голодная тигра! =)

Очевидно, что человек, работающий на компьютере использует по большей части центр сетчатки.

По этому в данном случае целесообразно говорить исключительно о среднем FPS именно смеси палочек и колбочек.

На одном сайте мне удалось найти результаты исследований на эту тему.

Минимальная инертность составила 20 мс.

Иначе говоря мы получаем FPS
50 кадров в секунду.

Означает ли это, что FPS выше этого значения никак не будет ощущаться глазом?

Зрительная система человека не ограничивается глазом. Глаз это лишь «сенсор», информация из которого воспринимается не напрямую, а проходит сложный и до конца не изученный процесс постобработки. Этим объясняется существование оптических иллюзий.

Для примера взгляните на эту картинку.

Очевидно, что здесь всего 1 кадр, однако мозг воспринимает сигналы получаемые от палочек (с переферии зрения) и тарктует их как признаки движения, это позволяте ему самому «дорисовывать» кадры и делать плавное движение всего из 1 кадра.

Предлагаем ознакомиться:  Синдром усталости глаз (астенопия): причины и лечение

Человеческий глаз
способен воспринимать наибольшее FPS на переферии зрения. Современные мониторы еще не достигли таких размеров, что бы покрывать все поле зрения человека. И это накладывает определенные ограничения на степень реалистичности картинки.

Разработчики видеоигр понимают это и поэтому придумали добавлять по краям экрана эффект размытия, этот эффект позволяет мозгу воспринимать происходящее на экране более реалистично. В то же время размытие снижает требование к FPS на краях экрана, т.к.

Выводы

Принимая во внимание чрезвучайную сложность постобработки синалов человеческим мозгом, указать точное значение фпс, воспринимаемое нами, с точностью до единицы попросту невозможно.

Можно оттолкнуться только от физического предела восприятия в 20 мс, что равнозначно 50 FPS.

В тоже время учитывать, что края монитора захватываются частью переферийного зрения, где чувствительность рецепторов выше, но как мы поняли в этой области изображения разработчики игр научились обманывать зрительную систему.

В итоге рациональным является остановиться на 60 FPS взяв 10 FPS прозапас для просмотра видеоряда в котором нет эффекта размытия по краям.

Одна из самых злободневных тем, которая постоянно всплывает в игровой и видео-индустрии – какую скорость передачи кадров можно считать оптимальной. По одну сторону баррикад стоят поборники традиций, которые считают, что 24 кадра в секунду для фильмов и 30 кадров в секунду для игр – это магические числа, и превышать эти значения нет никакого смысла.

В этой статье авторства Саймона Кука из Microsoft Xbox Advanced Technology Group мы постараемся объяснить, почему человеческому глазу приятнее более высокая скорость передачи кадров.

Обсуждение этого вопроса может быть немного проблематичным, так как человеческий глаз представляет собой невероятно сложный инструмент, который производит независимую обработку изображения еще до того, как сигнал достигнет мозга.

Нам нравится думать, что то, что мы видим, является непреложной истиной, и вся наша визуальная система построена на этом утверждении. Тем не менее, это заблуждение. Чувствительность глаза к цвету, движению, свету и ускорению/замедлению уникальна для каждого человека.

Ситуация еще больше осложняется тем фактом, что мы часто сравниваем наши глаза с камерами и говорим о зрении так же, как если бы мы говорили о компьютерной графике, однако ни одна из этих аналогий не описывает истинных процессов, которые позволяют глазам получать и обрабатывать информацию.

При всем при этом, если человеку предоставляется возможность поиграть в игру с более высокой скоростью передачи кадров, он ей непременно воспользуется. Порой предпочтение отдается скорости передачи кадров даже выше 60 кадров в секунду (60 Гц);

Теория Саймона Кука заключается в том, что подобное предпочтение высокой скорости передачи кадров объясняется одним интересным механическим аспектом нашего зрения: даже если зафиксировать взгляд на одной неподвижной точке, сетчатка все равно не будет полностью неподвижной.

Колебания сетчатки, которые в научных кругах называют микротремором глаза, происходят со средней частотой 83,68 Гц, а область сдвига составляет примерно 150-250 нм, что примерно соответствует размеру 1-3 фоторецепторов в сетчатке.

Благодаря колебаниям сетчатки свет попадает как на клетки с on-центром, так и на клетки с off-центром, стимулируя оба типа клеток. Кук считает, что это улучшает нашу способность видеть очертания объектов. По словам ученого, все это также как-то связано с эффектом «зловещей долины».

Если теория Кука верна, это значит, что человеческая сетчатка увеличивает разрешение окружающего мира, как и видеокарты и игровые консоли, которые используют внутренние ресурсы для создания более четкой картинки, которую они затем выдают на дисплей.

Но эта возможность извлекать дополнительную информацию из увиденного зависит от того, с какой скоростью нам подается информация. Если частота выборки (30 Гц, 30 кадров в секунду) ниже половины частоты микротремора сетчатки, то изображения не сменяются достаточно быстро, чтобы глаз мог извлечь дополнительную информацию.

Если вы следите за полемикой в области так называемого микро-«заикания» и задержки кадров в играх, то знаете, что одна из причин, по которой микро-«заикание» является менее интуитивным объективным показателем производительности по сравнению со скоростью передачи кадров, – это снижение преимущества более низкого времени смены кадров по мере того, как постоянная скорость передачи кадров приближается к 60 кадрам в секунду.

Уменьшение задержки кадров с 33,3 мс (30 кадров в секунду) до 25 мс (40 кадров в секунду) более заметно, чем увеличение количества кадров в секунду с 40 до 60, и это несмотря на то, что во втором случае происходит более значительный сдвиг.

Если Кук прав, этот феномен объясняется тем, что собственная супер-разрешающая способность глаза наиболее эффективно работает на отметке примерно 43 кадра в секунду. Еще одним интересным аспектом наблюдений ученого является то, что более высокая скорость передачи кадров при более низком разрешении может обеспечить лучшие результаты, чем популярный в наши дни показатель 1080p @ 30 fps.

Поверят ли в это разработчики или нет – пока что вопрос открытый. Большинство тайтлов для Xbox не смогли добиться показателя 1080p @ 30 fps и предпочли , нежели опускаться до свойственного прошлому поколению показателя 720p.

Вообще, тема, связанная с кадровой частотой, очень обширная и многогранная и затрагивает огромное количество понятий, такие как: зрительное восприятие, кинематографическая съемка, растровая развертка и многие другие.

Первый на очереди вопрос, с которым мне предстоит разделаться, звучит следующим образом: сколько кадров в секунду способен увидеть человеческий глаз? Перед тем, как я отвечу на этот вопрос, давайте ненадолго обратимся к любой энциклопедии, чтобы разобраться в том, как человеческий глаз воспринимает информацию.

Если вы откроете страницу с вкладкой “Зрительное восприятие” и задержитесь там какое-то время, то вы поймете, что человеческий глаз куда более сложное устройство, нежели видеокамера, и он не воспринимает информацию по кадрам, а выстраивает полученное изображение в плавную анимацию при наличии любого количества кадров.

эффект слепого пятна, недостаточная цветокоррекция и т.д. Более подробно можете прочитать в той же Википедии. Так вот восприятие информации по кадрам является некомфортным для нашего мозга, если так можно выразиться.

Поэтому, когда мы смотри не на экран монитора, а на любое другое естественное природное явление, то изображение всегда плавное, оно не дергается, не прерывается и т.д. С изображением на экранах мониторов ситуация немного другая.

Если верить Википедии, то изображение, полученное глазным яблоком, хранится в зрительной коре головного мозга около 66.6 миллисекунды. Исходя из этого, можно сделать простой логический вывод, что для того, чтобы воспринимать набор различных изображений как самую простую анимацию, нашему глазу необходимо, как минимум 16 отличных друг от друга кадров в секунду.

Вспоминаем школьные уроки. В одной секунде 1000 миллисекунд. 66.6*15=999 миллисекунд, что почти, что равняется одной секунде. Таким образом, при 16 кадрах в секунду предыдущий кадр не успевает исчезнуть, а уже появляется новый.

Это и создает иллюзию анимации. Это необходимый минимум для комфортного восприятия, идущего друг за другом ряда кадров. То есть, всё, что меньше 16 кадров будет восприниматься нашим мозгом как слайд шоу.

Вывод

Восприятие не ограничивается 24, или 60 кадрами в секунду. Глаз человека способен видеть гораздо больше, чем мы предполагаем. Восприятие частоты в кино и играх отличается. В кино значение кадров неизменно, а в играх наоборот. Из-за чего в кино достаточно кадров для плавности, а в играх нет.

Учёные рассуждают об одном из главных предметов споров среди геймеров.

В закладки

Редактор PC Gamer Алекс Уилтшир (Alex Wiltshire) с нейробиологами и психологами, чтобы выяснить, сколько кадров в секунду в играх нужно человеческому глазу и мозгу. Ответ на вопрос оказался непростым.

Многие геймеры знают, что в играх важно не только количество кадров, но и стабильность их поступления: например, ровные 30 кадров могут восприниматься намного приятнее, чем «болтание» в промежутке от 40 до 50.

Это связано с тем, что просадки в некоторых сценах воспринимаются как те самые пресловутые «тормоза» (мозг ожидает увидеть определённое движение с той же плавностью, что и остальные, но компьютер не успевает обработать картинку с нужной скоростью).

Поэтому иногда разработчики, уделившие недостаточно внимания оптимизации, выпускают игру с ограничением в 30 кадров даже на ПК, что обычно вызывает заметное возмущение среди геймеров. А для консольных игр без многопользовательского режима 30 кадров вообще являются стандартом.

Однако в своём исследовании Уилтшир затронул только стабильную частоту кадров и не касался вопроса вертикальной синхронизации и других параметров компьютера, влияющих на восприятие картинки.

Загрузка ...
Adblock detector