Зрение человека – это… Что такое Зрение человека?

Основные свойства зрения

Способность глаза воспринимать свет и распознавать разл. степени его яркости называется светоощущением, а способность приспосабливаться к разной яркости освещения — адаптацией глаза; световая чувствительность оценивается величиной порога светового раздражителя.

Человек с хорошим зрением способен разглядеть ночью свет от свечи на расстоянии нескольких километров. Однако световая чувствительность зрения многих ночных животных (совы, грызуны) гораздо выше.

Максимальная световая чувствительность палочек глаза достигается после достаточно длительной темновой адаптации. Её определяют под действием светового потока в телесном угле 50° при длине волны 500 нм (максимум чувствительности глаза).

1, как следовало бы ожидать исходя из изменений площади зрачка. На самом деле освещённость сетчатки пропорциональна произведению площади зрачка, яркости объекта и коэффициенту пропускания глазных сред[13].

Вклад зрачка в регулировку чувствительности глаза крайне незначителен. Весь диапазон яркостей, которые наш зрительный механизм способен воспринять, огромен: от 10−6 кд·м² для глаза, полностью адаптированного к темноте, до 106 кд·м² для глаза, полностью адаптированного к свету[14][15] Механизм такого широкого диапазона чувствительности кроется в разложении и восстановлении фоточувствительных пигментов в фоторецепторах сетчатки — колбочках и палочках.

Чувствительность глаза зависит от полноты адаптации, от интенсивности источника света, длины волны и угловых размеров источника, а также от времени действия раздражителя. Чувствительность глаза понижается с возрастом из-за ухудшения оптических свойств склеры и зрачка, а также рецепторного звена восприятия.

Максимум чувствительности при дневном освещении лежит при 555—556 нм, а при слабом вечернем/ночном смещается в сторону фиолетового края видимого спектра и равен 510 нм (в течение суток колеблется в пределах 500—560 нм).

Объясняется это (зависимость зрения человека от условий освещённости при восприятии им разноцветных объектов, соотношение их кажущейся яркости — эффект Пуркинье) двумя типами светочувствительных элементов глаза — при ярком свете зрение осуществляется преимущественно колбочками, а при слабом задействуются предпочтительно только палочки.

Острота зрения

Способность различных людей видеть большие или меньшие детали предмета с одного и того же расстояния при одинаковой форме глазного яблока и одинаковой преломляющей силе диоптрической глазной системы обусловливается различием в расстоянии между чувствительными элементами сетчатки и называется остротой зрения.

Острота зрения — способность глаза воспринимать раздельно две точки, расположенные друг от друга на некотором расстоянии (детализация, мелкозернистость, разрешётка). Мерилом остроты зрения является угол зрения, то есть угол, образованный лучами, исходящими от краёв рассматриваемого предмета (или от двух точек A и B) к узловой точке (K) глаза.

Острота зрения обратно-пропорциональна углу зрения, то есть, чем он меньше, тем острота зрения выше. В норме глаз человека способен раздельно воспринимать объекты, угловое расстояние между которыми не меньше 1′ (1 минута).

Острота зрения — одна из важнейших функций зрения. Острота зрения человека ограничена его строением. Глаз человека в отличие от глаз головоногих, например, это обращённый орган, то есть, светочувствительные клетки находятся под слоем нервов и кровеносных сосудов.

Острота зрения зависит от размеров колбочек, находящихся в области жёлтого пятна, сетчатки, а также от ряда факторов: рефракции глаза, ширины зрачка, прозрачности роговицы, хрусталика (и его эластичности), стекловидного тела (кои составляют светопреломляющий аппарат), состояния сетчатой оболочки и зрительного нерва, возраста.

Остроту зрения и/или Световую чувствительность часто также называют разрешающей способностью простого(невооруженного) глаза (resolving power).

См. такжеОпределение остроты зрения

Поле зрения

Периферическое зрение (поле зрения) — определяют границы поля зрения при проекции их на сферическую поверхность (при помощи периметра). Поле зрения — пространство, воспринимаемое глазом при неподвижном взгляде.

Изменения поля зрения обуславливаются органическими и/или функциональными заболеваниями зрительного анализатора: сетчатки, зрительного нерва, зрительного пути, ЦНС. Нарушения поля зрения проявляются либо сужением его границ (выражают в градусах или линейных величинах), либо выпадением отдельных его участков (Гемианопсия), появлением скотомы.

Бинокулярность

Рассматривая предмет обоими глазами, мы видим его только тогда одиночным, когда оси зрения глаз образуют такой угол сходимости (конвергенцию), при котором симметричные отчётливые изображения на сетчатках получаются в определённых соответственных местах чувствительного жёлтого пятна (fovea centralis).

Основными характеристиками бинокулярного зрения являются наличие элементарного бинокулярного, глубинного и стереоскопического зрения, острота стереозрения и фузионные резервы.

Наличие элементарного бинокулярного зрения проверяется посредством разбиения некоторого изображения на фрагменты, часть которых предъявляется левому, а часть — правому глазу. Наблюдатель обладает элементарным бинокулярным зрением, если он способен составить из фрагментов единое исходное изображение.

Наличие глубинного зрения проверяется путём предъявления силуэтных, а стереоскопического — случайно-точечных стереограмм, которые должны вызывать у наблюдателя специфическое переживание глубины, отличающееся от впечатления пространственности, основанного на монокулярных признаках.

Острота стереозрения — это величина, обратная порогу стереоскопического восприятия. Порог стереоскопического восприятия — это минимальная обнаруживаемая диспаратность (угловое смещение) между частями стереограммы.

Для его измерения используется принцип, который заключается в следующем. Три пары фигур предъявляются раздельно левому и правому глазу наблюдателя. В одной из пар положение фигур совпадает, в двух других одна из фигур смещена по горизонтали на определённое расстояние.

Испытуемого просят указать фигуры, расположенные в порядке возрастания относительного расстояния. Если фигуры указаны в правильной последовательности, то уровень теста увеличивается (диспаратность уменьшается), если нет — диспаратность увеличивается.

Фузионные резервы — условия, при которых существует возможность моторной фузии стереограммы. Фузионные резервы определяются максимальной диспаратностью между частями стереограммы, при которых она ещё воспринимается в качестве объемного изображения.

Для измерения фузионных резервов используется принцип, обратный применяемому при исследовании остроты стереозрения. Например, испытуемого просят соединить в одно изображение две вертикальных полосы, одна из которых видна левому, а другая — правому глазу.

Экспериментатор при этом начинает медленно разводить полосы сначала при конвергентной, а затем при дивергентной диспаратности. Изображение начинает раздваиваться при значении диспаратности, характеризующей фузионный резерв наблюдателя.

Бинокулярость может нарушаться при косоглазии и некоторых других заболеваниях глаз. При сильной усталости может наблюдаться временное косоглазие, вызванное отключением ведомого глаза.

Контрастная чувствительность — способность человека видеть объекты, слабо отличающиеся по яркости от фона. Оценка контрастной чувствительности производится по синусоидальным решеткам. Повышение порога контрастной чувствительности может быть признаком ряда глазных заболеваний, в связи с чем его исследование может применяться в диагностике.

Адаптация зрения

Приведенные выше свойства зрения тесно связаны со способностью глаза к адаптации. Адаптация глаза — приспособление зрения к различным условиям освещения. Адаптация происходит к изменениям освещённости (различают адаптацию к свету и темноте), цветовой характеристики освещения (способность воспринимать белые предметы белыми даже при значительном изменении спектра падающего света).

Адаптация к свету наступает быстро и заканчивается в течение 5 мин., адаптация глаза к темноте — процесс более медленный. Минимальная яркость, вызывающая ощущение света, определяет световую чувствительность глаза.

Предлагаем ознакомиться:  Симптомы ухудшение памяти зрения головные боли

Последняя быстро нарастает в первые 30 мин. пребывания в темноте, её повышение практически заканчивается через 50—60 мин. Адаптацию глаза к темноте исследуют при помощи специальных приборов — адаптометров.

Понижение адаптации глаза к темноте наблюдают при некоторых глазных (пигментная дистрофия сетчатки, глаукома) и общих (A-авитаминоз) заболеваниях.

Адаптация проявляется также в способности зрения частично компенсировать дефекты самого зрительного аппарата (оптические дефекты хрусталика, дефекты сетчатки, скотомы и пр.)

Влияние компьютера на зрение человека

Влияние компьютера на зрение человека – не однозначно. Большинство людей убеждено, что монитор компьютера, а точнее его излучение просто убивает зрение. Что компьютер является причиной утомления, сухости глаз и так далее.

Что же на самом деле происходит? Влияет ли компьютер на качество зрения?

Согласно многочисленным исследованиям американских и европейских исследователей, ультрафиолетовое и рентгеновское излучение, которое исходит от монитора компьютера – очень незначительно, и навредить зрению не может. Гораздо большая «порция» этих лучей исходит от ламп накаливания.

зрение человека фотоВ то же время, современный монитор компьютера покрыт специальной защитной пленкой, которая минимизирует излучение еще больше. Эту пленку можно сравнить с солнцезащитными очками. Это касается современных мониторов, элементы которых практически не мигают, не содержат ртути и прочих вредных веществ.

В тоже время нельзя поспорить и с тем, что с тех пор, как компьютер стал естественным «обитателем» в каждом доме, увеличилось количество людей с нарушениями зрения.

Негативное влияние компьютера на зрение оказывается по следующим причинам:

  1. Продолжительная и беспрерывная работа за компьютером. Если вы целый день работаете за компьютером, а вечером смотрите фильмы по компьютеру, общаетесь в социальных сетях, то немудрено, что глаза краснеют, слезятся, нарушается четкость читаемой информации и так далее. Особенно быстрому утомлению подвержены дети, поэтому им особенно нужно контролировать время пребывания перед компьютером.
  2. Несоблюдение гигиены зрения. То есть, в большинстве случаев рабочее место и время организовано не правильно: компьютер находится слишком близко от глаз, стоит неправильно по отношению к окну. Кроме этого, часто пользователи сидят сгорбленными, вытягивая голову вперед. Это нарушает передачу нервных импульсов к головному мозгу и тем самым, человек плохо видит и быстро устает.
  3. Некачественное освещение. Если работать перед компьютером в темном помещении, либо в плохо освещаемом помещении – глаза быстро утомляются из-за напряжения.

Дефекты зрения

Самый массовый недостаток — нечёткая, неясная видимость близких или удалённых предметов.

Дефекты хрусталика

Дальнозоркостью называется такая аномалия рефракции, при которой лучи света, попадающие в глаз, фокусируются не на сетчатке, а позади неё. В легких формах глаз с хорошим запасом аккомодации компенсирует зрительный недостаток с помощью увеличения кривизны хрусталика цилиарной мышцой.

При более сильной дальнозоркости (3 дптр и выше) зрение плохое не только вблизи, но и вдаль, причем глаз не способен скомпенсировать дефект самостоятельно. Дальнозоркость обычно бывает врожденной и не прогрессирует (обычно уменьшается к школьному возрасту).

При дальнозоркости назначают очки для чтения или постоянного ношения. Для очков подбираются собирающие линзы (перемещают фокус вперед на сетчатку), при использовании которых зрение пациента становится наилучшим.

Несколько отличается от дальнозоркости пресбиопия, или старческая дальнозоркость. Пресбиопия развивается вследствие утраты хрусталиком эластичности (что является нормальным результатом его развития). Этот процесс начинается ещё в школьном возрасте, но человек обычно замечает ослабление зрения вблизи после 40 лет.

(Хотя в 10 лет дети-эмметропы могут читать на расстоянии 7 см, в 20 лет — уже минимум 10 см, а в 30 — 14 см и так далее.) Старческая дальнозоркость развивается постепенно, и к 65—70 годам человек уже полностью теряет способность аккомодировать, развитие пресбиопии завершено.

Близорукость — аномалия рефракции глаза, при которой фокус перемещается вперед, а на сетчатку попадает уже расфокусированное изображение. При близорукости дальнейшая точка ясного зрения лежит в пределах 5 метров (в норме она лежит в бесконечности).

Близорукость бывает ложной (когда из-за перенапряжения цилиарной мышцы происходит её спазм, в результате чего кривизна хрусталика остается слишком большой при зрении вдаль) и истинной (когда глазное яблоко увеличивается в передне-задней оси).

В легких случаях далекие объекты размыты, в то время как близкие остаются четкими (дальнейшая точка ясного зрения лежит достаточно далеко от глаз). В случаях высокой близорукости происходит значительное снижение зрения.

В подростковом возрасте близорукость часто прогрессирует (глаза постоянно напрягаются для работы вблизи, из-за чего глаз компенсаторно растет в длину). Прогрессия близорукости иногда принимает злокачественную форму, при которой зрение падает на 2—3 диоптрии в год, наблюдается растяжение склеры, происходят дистрофические изменения сетчатки.

В тяжелых случаях возникает опасность отслойки перерастянутой сетчатки при физической нагрузке или внезапном ударе. Остановка прогрессии близорукости обычно наступает к 22—25 годам, когда перестает расти организм.

толстые очковые стекла создают сильные искажения и уменьшают предметы визуально, отчего человек не видит достаточно хорошо даже в очках. В таких случаях лучшего эффекта можно добиться с помощью контактной коррекции.

Зрение человека

Несмотря на то, что вопросу остановки прогрессирования близорукости посвящены сотни научно-медицинских работ, до сих пор нет доказательств эффективности ни одного метода лечения прогрессирующей близорукости, включая операции (склеропластика).

Есть доказательства небольшого, но статистически значимого уменьшения темпов роста близорукости у детей при применении глазных капель атропина и (отсутствующего в России) глазного геля пирензипина[источник не указан 906 дней].

При близорукости часто прибегают к лазерной коррекции зрения (воздействие на роговицу с помощью лазерного луча с целью уменьшения её кривизны). Этот метод коррекции не до конца безопасный, но в большинстве случаев удается добиться значительного улучшения зрения после операции.

Дефекты близорукости и дальнозоркости могут быть преодолены с помощью очков или восстановительных курсов гимнастики как и другие нарушения рефракции.

Астигматизм — дефект оптики глаза, вызванный неправильной формой роговицы и (или) хрусталика. У всех людей формы роговицы и хрусталика отличаются от идеального тела вращения (то есть все люди имеют астигматизм той или иной степени).

В тяжелых случаях вытягивание по одной из осей может быть очень сильным, кроме того, роговица может иметь дефекты кривизны, вызванные другими причинами (ранениями, перенесенными инфекционными заболеваниями и т. д.).

При астигматизме лучи света преломляются с разной силой в разных меридианах, в результате чего изображение получается искривленным и местами нечетким. В тяжелых случаях искажения настолько сильны, что значительно снижают качество зрения.

Астигматизм легко диагностировать, рассматривая одним глазом лист бумаги с тёмными параллельными линиями — вращая такой лист, астигматик заметит, что тёмные линии то размываются, то становятся чётче. У большинства людей встречается врождённый астигматизм до 0,5 диоптрий, не приносящий дискомфорта.

Данный дефект компенсируется очками с цилиндрическими линзами, имеющими различную кривизну по горизонтали и вертикали и контактными линзами, (жёсткими или мягкими торическими), также, как и очковыми линзами, имеющими разную оптическую силу в разных меридианах.

Дефекты сетчатки

Общие сведения

Глаз человека

Предлагаем ознакомиться:  Можно ли вылечить астигматизм очками — Все о проблемах с глазами

Из-за большого числа этапов процесса зрительного восприятия его отдельные характеристики рассматриваются с точки зрения разных наук — оптики (в том числе биофизики), психологии, физиологии, химии (биохимии).

На каждом этапе восприятия возникают искажения, ошибки, сбои, но мозг человека обрабатывает полученную информацию и вносит необходимые коррективы. Эти процессы носят неосознаваемый характер и реализуются в многоуровневой автономной корректировке искажений.

Так устраняются сферическая и хроматическая аберрации, эффекты слепого пятна, проводится цветокоррекция, формируется стереоскопическое изображение и т. д. В тех случаях, когда подсознательная обработка информации недостаточна, или же избыточна, возникают оптические иллюзии.

Психология зрительного восприятия

Зрительный аппарат — глаза и проводящие пути — настолько тесно интегрирован с мозгом, что трудно сказать, где начинается та или иная часть процесса переработки зрительной информации.

В зависимости от ситуации, человек способен «видеть» предметы, частично скрытые от глаза, например, частой решёткой. В течение одной-двух недель человек полностью адаптируется к «перевёрнутому изображению мира», создаваемому специальными призматическими очками (Инвертоскопом).

Строение и факты, которых вы не знали

Зрение человека – это система, которая отличается своей компактностью, чувствительностью, способностью адаптироваться к потребностям человека. Эта система долговечна, невероятно восприимчивая к свету, образам, темноте и так далее. В этом состоит ее уникальность. Не менее уникален и удивителен зрительный процесс.

Составляющими зрительного процесса являются:

  • зрение человека фотоТемновая адаптация
  • Автоматический контроль усиления
  • Зрительный шум
  • Послеобразы

Темновая адаптация

Удивительность этого процесса состоит в том, что попадая в темное помещение сразу, после пребывания на улице в яркий солнечный день, первые минуты глаз совершенно ничего не видит. Но вот уже через несколько минут, человек улавливает контуры предметов, постепенно может определить площадь помещения.

Это говорит о том, что в процессе адаптации в темном помещении, в темное время суток на улице, чувствительность глаз увеличивается в несколько тысяч раз.

Как это можно объяснить?

Для лучшего понимания проведем аналогию между темновой адаптивностью глаз и работой радиоприемника. Так, если необходимо переключить с более сильной станции – на более слабую станцию, первое время звук вообще не слышен. Но стоит покрутить регулятор громкости и настройки, как звук адаптируется к станции.

Наряду с этим, при переключении с сильной станции – на более слабую станцию, звук остается постоянным все время.

Все остальное – громкость, четкость звука и прочее – зависит от настроек. Таким образом, можно предположить, что за адаптацию зрения к темноте отвечает некий «регулятор». Он также обеспечивает постоянство зрения в темноте.

Автоматический контроль усиления

Известно, что зрение человека – система, работающая слажено и практически самостоятельно. В данном случае имеется в виду, что глаза открываются сами и их не нужно открывать руками. Следуя из этого, стоит говорить о том, что зрительная система, в частности способность глаз, адаптироваться к разным условиям, управляется автоматическим контролем усиления.

Как это происходит?

Вся получаемая информация через сетчатку посредством нервных импульсов и фотонов передается в мозг, благодаря чему мы видим. Для того чтобы передать информацию, а также адаптироваться к новым световым условиям, необходима энергия.

Вот для этого-то процесса и нужна автоматическая система, которая будет генерировать нужную энергию, и способствовать автоматическому и быстрому «переключению» режимов процесса зрения и адаптации, в частности.

Зрительный шум

зрение человека фотоЗрительная деятельность глаз обеспечивается флуктуациями падающего фотона. Это является нормой. Но иногда можно отметить, что это не так. Нарушение флуктуации фотонов, это и есть шум зрения.

Как это «увидеть»?

Если затрудняется адаптация к новым условиям освещения, зрение может менять свое постоянство. Если это происходит, значит, вы «видите» шум зрения.

Послеобразы

Что такое послеобразы? Это явление видел каждый, наверняка. Как говорилось, зрение человека – чувствительная система, которая регулируется различными регуляторами. Так вот, послеобразы мы видим после того, как некоторое время сфокусированы на ярком объекте, после чего переводим глаза на стену нейтрального или белого цвета. И на этой стене, некоторое время мы видим прообраз того яркого предмета.

Прообразы могут возникать в разных оттенках. Каждый оттенок говорит о том, с каким усилением произошло «отпечатывание» видимого объекта на сетчатке.

Органы зрения – сложная система, благодаря которой мы можем собирать зрительную информацию. Орган зрения – один из важнейших органов чувств, который непосредственно влияет на функционирование мозга и развитие интеллекта, речи.

Глазное яблоко имеет следующее строение:

  • зрение человека фотоФиброзная оболочка, она же склера;
  • Сосудистая оболочка
  • Сетчатка
  • Радужка
  • Зрачок
  • Роговица
  • Хрусталик
  • Передняя и задняя камера глазного яблока
  • Реснитчатый поясок
  • Реснитчатое тело
  • Стекловидное тело
  • Желтое пятно
  • Диск зрительного нерва и зрительный нерв
  • Наружная и зрительная ось глаза

Все эти составляющие глазного яблока взаимосвязаны, а потому при повреждении одной из них, зрительная функция будет нарушена.

Что собой представляет каждая из оболочек, и какую функцию она выполняет, мы писали ранее.

А вот какие есть интересные факты про органы зрения человека:

  1. Глазное яблоко имеет форму неправильного шара. С одной стороны этот шар приплюснут спереди – назад. Весит глазное яблоко, в среднем – 7грамм. А вот диаметр глазного яблока у всех здоровых людей – одинаковый – 24мм. Меняться он может только вследствие глазных болезней. Например, близорукость.
  2. Цвет глаз. Сперва, все маленькие человечки имеют глаза голубого цвета. А уже к двум годам устанавливается «взрослый» цвет глаз, который остается на всю жизнь. Правда, из-за сильного стресса, цвет глаз может меняться даже у очень взрослого человека. Цвет глаз определяется пигментом, который вырабатывают меланоциты. Чем его больше, тем более темный цвет глаз. Самый редкий цвет – это зеленый. Также встречаются люди с красными глазами, у которых пигмент не вырабатывается вообще и радужка приобретает цвет сосудистой оболочки.
  3. Радужка глаз. У всех людей эта оболочка имеет индивидуальную структуру. Поэтому именно по ней проводят идентификацию личности. И это не зависимо от цвета глаз. Кроме того, структура радужки не меняется с возрастом, если не было повреждений глаз.
  4. Органы зрения здорового человека быстро адаптируются к смене света и тьмы. При этом все перестройки происходят не ощутимо для самого человека.
  5. С ног на голову. Известно, что глаз видит все в перевернутом виде. И в таком состоянии он проецирует эту информацию на сетчатку. А вот головной мозг во время чтения этой информации все переворачивает, и мы видим нормально.
  6. Дальтонизм или же нарушение цветовосприятия, носит такое название по фамилии ученого Дальтона, который объяснял эту проблему.
  7. зрение человека фотоОбмену не подлежит. По сей день, глаз является тем органом, который невозможно пересадить из-за близкой связи с мозгом. В то же время, такие составляющие, как роговицу, склеру и хрусталик можно трансплантировать.
  8. Чихаем только с закрытыми глазами. Каждый отметил, что во время чихания глаза автоматически закрываются. Это рефлекторный процесс, который необходим для защиты от разрывов связи глазного яблока с удерживающими его тканями.
  9. Глазные болезни. На сегодняшний день во всем мире, около 300млн человек страдает различными глазными недугами. Также известно, что на самом деле, снижение зрения вызывает катаракта, ослабление мышц и неправильный образ жизни.
  10. Очки и линзы. Самые популярные средства коррекции зрения – это очки и линзы. И вопреки популярному мнению, правильно подобранные очки и линзы не снижают зрение и не вредят глазам.
Предлагаем ознакомиться:  Амблиопия положена ли инвалидность

Физиология зрения человека

Цветовое зрение

В глазу человека содержатся два типа светочувствительных клеток (фоторецепторов): высоко чувствительные палочки, отвечающие за ночное зрение, и менее чувствительные колбочки, отвечающие за цветное зрение.

У приматов (в том числе и человека) мутация вызвала появление дополнительного, третьего типа колбочек — цветовых рецепторов. Это было вызвано расширением экологической ниши млекопитающих, переходом части видов к дневному образу жизни, в том числе на деревьях.

Мутация была вызвана появлением изменённой копии гена, отвечающего за восприятие средней, зелёночувствительной области спектра. Она обеспечила лучшее распознавание объектов «дневного мира» — плодов, цветов, листьев.

Видимый солнечный

спектр

Нормализованные графики светочувствительности колбочек человеческого глаза S, M, L. Пунктиром показана сумеречная, «чёрно-белая» восприимчивость палочек

«синие» колбочки находятся ближе к периферии, в то время как «красные» и «зеленые» распределены случайным образом,[2] что было подтверждено более детальными исследованиями в начале XXI века.[3] Соответствие типов колбочек трём «основным» цветам обеспечивает распознавание тысяч цветов и оттенков.

Кривые спектральной чувствительности трёх видов колбочек частично перекрываются, что способствует явлению метамерии. Очень сильный свет возбуждает все 3 типа рецепторов, и потому воспринимается, как излучение слепяще-белого цвета (эффект метамерии).

Равномерное раздражение всех трёх элементов, соответствующее средневзвешенному дневному свету, также вызывает ощущение белого цвета (см. Психология восприятия цвета).

Тип колбочек обозначение Воспринимаемые длины волн Максимум чувствительности[4][5]
S β 400—500 нм 420—440 нм
M γ 450—630 нм 534—555 нм
L ρ 500—700 нм 564—580 нм

Свет с разной длиной волны по-разному стимулирует разные типы колбочек. Например, желто-зелёный свет в равной степени стимулирует колбочки L и M-типов, но слабее стимулирует колбочки S-типа. Красный свет стимулирует колбочки L-типа намного сильнее, чем колбочки M-типа, а S-типа не стимулирует почти совсем;

зелено-голубой свет стимулирует рецепторы M-типа сильнее, чем L-типа, а рецепторы S-типа — ещё немного сильнее; свет с этой длиной волны наиболее сильно стимулирует также палочки. Фиолетовый свет стимулирует почти исключительно колбочки S-типа.

За цветовое зрение человека и обезьян отвечают гены, кодирующие светочувствительные белки опсины. По мнению сторонников трёхкомпонентной теории, наличие трёх разных белков, реагирующих на разные длины волн, является достаточным для цветового восприятия.

У большинства млекопитающих таких генов только два, поэтому они имеют двухцветное зрение. В том случае, если у человека два белка, кодируемые разными генами, оказываются слишком схожи или один из белков не синтезируется, развивается дальтонизм. Н. Н.

Чувствительный к красному свету опсин кодируется у человека геном OPN1LW [7].

Другие опсины человека кодируют гены OPN1MW, OPN1MW2 и OPN1SW, первые два из них кодируют белки, чувствительные к свету со средними длинами волны, а третий отвечает за опсин, чувствительный к коротковолновой части спектра.

Необходимость трех типов опсинов для цветового зрения недавно была доказана в опытах на беличьей обезьяне (саймири), самцов которых удалось излечить от врожденного дальтонизма путем введения в их сетчатку гена человеческого опсина OPN1LW[8].

Ген OPN1LW, который кодирует пигмент, отвечающий за воcприятие красного цвета, высоко полиморфен (в недавней работе Виррелли и Тишкова было найдено 85 аллелей в выборке из 256 человек [9]), и около 10% женщин[10], имеющих два разных аллеля этого гена, фактически имеют дополнительный тип цветовых рецепторов и некоторую степень четырёхкомпонентного цветового зрения.

Ген OPN1LW и гены, отвечающие за восприятие света со средней длиной волны, расположены в Х-хромосоме тандемно, и между ними часто происходит негомологичная рекомбинация или генная конверсия. При этом может происходить слияние генов или увеличение числа их копий в хромосоме. Дефекты гена OPN1LW — причина частичной цветовой слепоты, протанопии[7].

Трёхсоставную теорию цветового зрения впервые высказал в 1756 году М. В. Ломоносов, когда он писал «о трёх материях дна ока». Сто лет спустя её развил немецкий учёный Г. Гельмгольц, который не упоминает известной работы Ломоносова «О происхождении света», хотя она была опубликована и кратко изложена на немецком языке.

Параллельно существовала оппонентная теория цвета Эвальда Геринга. Её развили Дэвид Хьюбел (David H. Hubel) и Торстен Визел (Torsten N. Wiesel). Они получили Нобелевскую премию 1981 года за своё открытие.

Они предположили, что в мозг поступает информация вовсе не о красном (R), зелёном (G) и синем (B) цветах (теория цветаЮнга—Гельмгольца). Мозг получает информацию о разнице яркости — о разнице яркости белого (Yмах) и чёрного (Yмин), о разнице зелёного и красного цветов (G – R), о разнице синего и жёлтого цветов (B – yellow), а жёлтый цвет (yellow = R   G) есть сумма красного и зелёного цветов, где R, G и B — яркости цветовых составляющих — красного, R, зелёного, G, и синего, B.

Имеем систему уравнений — Кч-б = Yмах – Yмин; Kgr = G – R; Kbrg = B – R – G, где Кч-б, Kgr, Kbrg — функции коэффициентов баланса белого для любого освещения. Практически это выражается в том, что люди воспринимают цвет предметов одинаково при разных источниках освещения (цветовая адаптация).

Оппонентная теория в целом лучше объясняет тот факт, что люди воспринимают цвет предметов одинаково при чрезвычайно разных источниках освещения (цветовая адаптация), в том числе при различном цвете источников света в одной сцене.

Эти две теории не вполне согласованы друг с другом. Но несмотря на это, до сих пор предполагают, что на уровне сетчатки действует трёхстимульная теория, однако информация обрабатывается и в мозг поступают данные, уже согласующиеся с оппонентной теорией.

Зрительный анализатор человека в н.у. обеспечивает бинокулярное зрение, то есть зрение двумя глазами с единым зрительным восприятием. Основным рефлекторным механизмом бинокулярного зрения является рефлекс слияния изображения — фузионный рефлекс (фузия), возникающий при одновременном раздражении функционально неодинаковых нервных элементов сетчатки обоих глаз.

Зрение человека

Вследствие этого возникает физиологическое двоение предметов, находящихся ближе или дальше фиксируемой точки (бинокулярная фокусировка). Физиологичное двоение (фокус) помогает оценивать удалённость предмета от глаз и создает ощущение рельефности, или стереоскопичности, зрения.

При зрении одним глазом (монокулярное зрение) — посредством монокля, телескопа, микроскопа и т. п. — стереоскопичность зрения невозможна и восприятие глубины (рельефной удалённости) осуществляется гл. обр.

Ведущий глаз

Глаза человека функционально несколько различаются, поэтому выделяют ведущий и ведомый глаз. Определение ведущего глаза важно для охотников, видеооператоров и лиц других профессий. Если посмотреть через отверстие в непрозрачном экране (дырочка в листе бумаги на расстоянии 20—30 см) на отдалённый предмет, а затем, не смещая голову, поочередно закрывать правый и левый глаз, то для ведущего глаза изображение не сместится.

Загрузка ...
Adblock detector